Mat 2016 – Questão 15

Resolução

A solução para uma equação ordinária homogênea é do tipo:

mat2016-q15-f1

Calculando as derivadas de primeira e segunda ordem:

mat2016-q15-f2

Substituindo na equação:

mat2016-q15-f3

Como tem dois valores possíveis para λ, a solução fica:

mat2016-q15-f4

Para determinar c1 e c2, temos que usar as condições de contorno:

mat2016-q15-f5

E:

mat2016-q15-f6

Assim, a solução geral é:

mat2016-q15-f7

E a primeira derivada:

mat2016-q15-f8

No ponto x=0:

mat2016-q15-f9

Resposta: 06